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1 Introduction

VarGibbs provides the minimization method for calculating nearest-neighbour thermodynamic parameters [1].
What will this software do for you? Given a set of experimental melting temperatures, measured at any

species concentration, it will calculate the relevant nearest-neighbour entropies and enthalpies, as well as initi-
ation parameters. Once you have these parameters you may also use them to do simple melting temperature
prediction.

The method works by minimizing predicted temperatures for the nearest-neighbour model in a very similar
way as used previously by us for the Peyrard-Bishop model [2–4]. This is also the reason why VarGibbs shares
many practical aspects with our free software implementation for the Peyrard-Bishop model [5] such as the
format of specifying nearest-neighbours and result files.

Evidently, this is work in progress. The method is new and as such there may be aspects of it which are not
yet completely understood.

I would find it truly helpful indeed if you would let me know if this software is of any use to you. Showing a
list of interested users to funding agencies often helps to secure the necessary resources to keeping such projects
running. So, please, if you find this software useful let me know and if you use it for your scientific work please
cite the appropriate papers which are listed at the end of this manual.

I wish you all the best in using VarGibbs

Gerald

Belo Horizonte, May 10, 2023
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Changes

Version 4.0, May 2023

• New parameters for locked nucleic acids (LNA).

• Fixed bug that happened when multiple data files were read, in this case the sequences of the second file
would take the strand concentration of the first file. This is now fixed.

• Options can now be passed through an environment variable.

• New parameters for DNA derived from kinetic experiments from Rejali et al. [6].

• New parameters for DNA-RNA from Banerjee et al. [7].

• New option -cgeq (3.5.1) to define base pairs that should be treated as equivalent to CG base pairs for
the calculation of CG content used in salt corrections.

• Salt correction factors can now be customized and even be included in optimization, -saltscheme (3.5.7).

• New salt correction scheme -saltscheme=santalucia98 (3.5.7) from SantaLucia [8].

• New salt correction factor for DNA-RNA from Nakano et al. [9].

Version 3.1, August 2021

• New script files for RNA, contributed by Izabela Ferreira.

• You can now do a -calc=nncheck (3.1.11) for single sequences.

• New warning and error formats.

• New options to control the amount of output in log files, -minloglevel (3.3.8) and -loginterval (3.3.9).

• Documentation corrections and improvements.

• Added missing Na+ concentration information in some parameter files.

• New option -printusedpar (3.4.8).

Version 3.0, January 2021

• Extended format for data files, see section 8.3.

Version 2.2, March 2019

• New parameter files for hybrid DNA-RNA [10].

• New option to require log files to be written in gzip format (new option -zlog (3.3.7)).

• Redesign of NN calculation taking advantage of pointers, CPU times reduce by a factor of 7 compared to
previous versions.

• Added symmetry_correction_entropy to some parameter files

• New parameter file P-SL04.par from SantaLucia and Hicks [11]

• boost iostreams library is now required for compilation
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Version 2.1, October 2018

• New compiler option -std=c++11

• Program now shows elapsed cpu time and memory usage.

• New optimized parameters for RNA with salt dependence.

• New options for performing numerous salt corrections, new parameter Na+:concentration, see section 3.5.

• analysis with option -calc=nncheck (3.1.11) is now saved into a specific file with extension .nncheck

• Removal of AOP-DRC17.par, AOP-LS95.par and D-DRC17.dat, they will be reintroduced after further
improvements.

Version 2.0, August 2017

• Modifications for hybrid DNA-RNA sequences with specific naming scheme for parameters. New optimized
parameters for DNA-RNA, AOP-LS95.par and AOP-DRC17.par, and associated datasets D-LS95.dat and
D-DRC17.dat, as well as old unoptimized parameters P-SG95.par

• Documentation updates and corrections.

• Corrected parameter files P-BS86.par and P-FR86.par for RNA.

• Several new parameters from the literature.

• Added new option -nnpo (3.1.3) for using NN parameters only.

Version 1.1, December 2015

• Documentation updates.

• Code clean up, removed gbc_exp from C++ name space.

• Linking to the library libboost_regex is now required.

• Added optimized parameter files at different salt concentrations for D-OW04 datasets.

• Added original parameters from Refs. 12–14.

• Correcting bug which was not generating complementary sequence when cseq was not given.

• You can now specify a list of Ct concentrations in option -ct (3.1.8)

Version 1.0, July 2014

First public release of VarGibbs.
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2 Installation

The easiest way to install is to visit the OpenSUSE Build service (http://build.opensuse.org) and search
VarGibbs for your Linux distribution, this should take care of obtaining the correct libraries which are needed
for VarGibbs to run.

2.1 What will be installed?

Typically, there will be at least a binary executable file

/usr/bin/vargibbs

and further files, such as model parameter files, pre-calculated regression parameters and example scripts are
to be found in

/usr/share/vargibbs

the documentation (which you are reading right now) should be located at

/usr/share/doc/packages/vargibbs

2.2 Specific instructions

2.2.1 OpenSUSE

Installing via repository Using the graphical interface Yast2 or the command line zypper add the following
repository URL

http://download.opensuse.org/repositories/home:/drgweber/openSUSE_15.4/

then search for the package VarGibbs and select install. I you have a different OpenSUSE then change the last
numbers to your installed version accordingly. The installation via repository has the advantage that you may
simply update for future versions instead of repeating the whole installation procedure.

Command line download/install Download the appropriate package for your system from

http://download.opensuse.org/repositories/home:/drgweber/openSUSE_15.4/

for example if your system is 64bits, you may download the package

http://download.opensuse.org/repositories/home:/drgweber/openSUSE_15.4/x86_64/VarGibbs-4-1.21.1.x86_64.rpm

note: version numbers may vary from this example. Then install

zypper install VarGibbs-4-1.21.1.x86_64.rpm

2.3 Compiling the source files

Please read this section if you are unable to find the packages for your specific Linux distribution.
This software was developed and tested under OpenSUSE Linux 15.4 and depends on some libraries to

function properly:

1. libboost filesystem1 66 0 libboost system1 66 0 libboost regex1 66 http://www.boost.org

2. gsl http://www.gnu.org/software/gsl/

3. libblas3 http://www.netlib.org/lapack/
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which means that you will need at least these specialized packages in addition to the usual gcc and g++ compiler.
Download the source package from the OpenSUSE build service at

https://build.opensuse.org/package/show?package=VarGibbs&project=home%3Adrgweber

or from my personal webpage

https://sites.google.com/site/geraldweberufmg/vargibbs

Typically the package is called something like vargibbs-4.tar.bz2 After unpacking the tar package

tar -xvjf vargibbs-4.tar.bz2

change into the unpacked folder

cd vargibbs-4

if all necessary packages are available you should try to compile using the make command

make

If the compilation is successful, you should see something like

g++ -std=c++11 -DBUILDTIME=\"2019-03-22T18:43:15+00:00\" -DSVNVERSION=\"2.2\" -DLINUXSYSTEM=\"\" -g -O3 -o vargibbs -Isrc src/vargibbs.cpp src/Options.cpp src/Nucleotide.cpp src/CPUtime.cpp -lz -lgsl -lgslcblas -lm -lboost_filesystem -lboost_system -lboost_regex

and nothing else, that is it! This generates the binary file vargibbs, which you may copy to your main
installation at /usr/bin (you will need root permission) or into your local folder /home/user/bin (replace
user with you actual user name).

2.4 Additional software

Although not required for vargibbs to run, you may find useful to install GRI which is a scientific graphing
language which can be found at

http://gri.sourceforge.net/

note that some Linux distributions include GRI already, for OpenSUSE try

zypper install gri

2.5 If things go wrong

Most problems will come from missing library packages or from erroneous usage of your system. It is not
possible for me to cover everything that may go wrong, so please feel free to contact me. Please include a
detailed description of error messages, which system you are using and a step by step description of what you
tried to do. Please understand that I will need as much information as possible. I can do nothing with messages
simply saying “VarGibbs is not working on Ubuntu”.

2.5.1 If you don’t have a Linux system

You may copy an OpenSUSE Live system on a CD or onto a USB memory stick and reboot your computer with
this system. If you do, proceed as you were using a normal OpenSUSE 15.4 system, following the instructions
above. See installation instructions for Live OpenSUSE at http://en.opensuse.org/Live_USB_stick

2.5.2 License

This software is published under the GNU General Public License version 3 (GPLv3), the complete text of this
license can be found in the documentation folder. If you wish to use this software under a different license or
wish to make changes to the software without distributing it under the GPLv3 please contact me so that we
can arrange for a specific license.
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3 Usage

VarGibbs takes all its program option from the command line, therefore you should invoke the binary vargibbs

with some of the arguments which are described in the next sections. For example

vargibbs -o=mytest -par=P-SL98.par -seq=ACGT -calc=prediction

performs a prediction for a sequence ACGT with the parameters from SantaLucia [8], and results are written into
files beginning with mytest such as mytest.dat. Each option starts with a dash - and are separated by spaces.
Alternatively, you can pass options through an environment variable VARGIBBSin exactly the same way as you
would pass them in the command line,

export VARGIBBS="-o=mytest -par=P-SL98.par -seq=ACGT -calc=prediction"

vargibbs

Numerous example shell scripts are provided and I recommend you study them as they are the best source to
illustrate how to use VarGibbs. The following section details every available program option for VarGibbs.

In this section we provide all options for VarGibbs. Please note that some options should be used in
conjunction with other options. Please see 5 on how to obtain new parameters.

3.1 General options

3.1.1 -o=<basename>

Specifies the output basename, that is, all files which are generated start with basename

3.1.2 -par=<filename>

Specifies the input parameter file name. This can be a list of files -par=file1.par,file2.par,file3.par. In
case of multiple specifications of the same model parameter, the last one supersedes previous parameters and a
warning of type WROVNV will be shown. For example if file1.par has the parameter AT_AT:enthalpy -10.6708

and file3.par has AT_AT:enthalpy -10.4256, the final value for AT_AT:enthalpy will be -10.4256.

3.1.3 -nnpo=<0 or 1>

NN parameters only, if set to 1 only NN parameters are used. All initialization, symmetry and terminal
parameters will be ignored. This option is useful if one wishes to check energies for specific sequences using
only NN parameters. See also section 6.

(default) -parid=0 use all parameters specified in -par=<filename> (3.1.2)

3.1.4 -parid=<identifier>

this is an identification string which is added to newly generated parameter files. Its only function is to help
with the organization of your files.

(default) -parid=vargibbs

3.1.5 -data=<filename>

specifies the input file containing nucleotide sequences and melting temperatures. VarGibbs was not created
with very large datasets in mind, and all sequences are loaded into memory. A safe limit is of the order of 50000
sequences which will require about 1GB of memory to run.

The file format is composed of columns
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data/D-OW04-69.dat
1 temperature

2 ATCAATCATA TAGTTAGTAT 21.3 69 2

3 TTGTAGTCAT AACATCAGTA 24.7 69 2

4 GAAATGAAAG CTTTACTTTC 22.1 69 2

The first column is the sequence (from 5′ → 3′) and the second column is the secondary strand (from 3′ → 5′).
The third column is the melting temperature in ◦C, the fourth column is the salt concentration (in mM or
mol/L). The last column the species concentration (in µM). The secondary strand does not necessarily need to
be the complementary of the main strand as long as there are parameters for the mismatched pairs. If VarGibbs
fails to find parameters for your sequences it will complain loudly.

3.1.6 -duplextype=<DNA or RNA>

Selects the type of duplex we should expect, this is important for selecting the base pair complementarity. Note
that IUPAC codes cannot be used since we need to know which nucleotide parameters to use, that is, we cannot
use N for example since we would not know which parameters to use.

(default) -duplextype=DNA , will expect A, C, G and T base pairs and will consider A complementary to T
and C complementary to G.

-duplextype=RNA , same as for DNA but considers A and U as complementaries [4].

3.1.7 -rs=<seed>

Sets the seed of the random number generator (C function srand) which is used to modify the dataset. If you
use the same seed you will get exactly the same random modifications.

3.1.8 -ct=<list of species concentration>

Specifies the species concentration Ct given in 10−6 mol/L (or µM). Usually it is not necessary to provide this
as this value should be contained in the dataset file, unless of course you would like a different concentration
from what is given in the file. For files containing symmetry adjusted species concentration you may prefer to
use -mct (3.1.9).
For example, for Ct = 400 µM you would write

-ct=400

You may also specify a list of concentrations

-ct=100,200,400

3.1.9 -mct=<factor>

Multiply the species concentration of all sequences by a certain factor. This is useful for files containing symmetry
adjusted melting temperatures. For example for files where the concentration is 100 µM for self-complementary
sequences and 400 µM otherwise.

3.1.10 -dict=<list of nucleotides>

When using non-canonical nucleotides, for example inosine, you must tell VarGibbs which characters to use in
addition to its usual dictionary of A,T,C,G and U. You should also tell VarGibbs if there is a complementary
pair to this new nucleotide. If there is none, simply repeat the character. In the following example we are
adding the letter I for inosine

-dict=I:I

here we are saying: consider I and its complementary I as new letters. If you wish to add two or more new
letters simply make a comma-separated list,

-dict=I:I,J:J

but do not add blank spaces after the comma.
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3.1.11 -calc=<type of calculation>

This sets the type of calculation. See section 5 for details on how to perform minimizations.

(default) -calc=prediction performs melting temperature predictions for given set of parameters.

-calc=minlocal performs one local minimization

-calc=minglobal performs several local minimizations by varying either the initial variables or by varying
the dataset. This option may take a very long time to run depending on the stop.

-calc=nncheck no calculations are performed, the sequence data file is thoroughly analysed and each sequence
is completely broken down into its constituent base pairs and nearest neighbours. This option works for complete
data files -data (3.1.5) or with single sequences -seq (3.2.1). A file with extension .nncheck is created.

3.2 Specific options for temperature prediction (-calc=prediction)

Instead of providing a data file containing sequences you may wish to specify a single sequence for predicting
its melting temperature. This is achieved with the options -seq (3.2.1) and optionally -cseq (3.2.2). In this
case you may wish to adjust also the value of species concentration with -ct (3.1.8).

3.2.1 -seq=<nucleotide sequence>

You should give the main strand from 5′ to 3′, the complementary sequence will be worked out automatically
(see also -dict (3.1.10) for non-canonical nucleotides).

(example 1) -seq=ACGTTGAATT

(example 2) "-seq=d(ACGTTGAATT)" for hybrid DNA-RNA it is necessary to specially format the sequence.
Also, due to the parenthesis, it is necessary to enclose the option in double quotes, otherwise the bash command-
line interpreter will throw an error. See also 8.2.

3.2.2 -cseq=<nucleotide sequence>

You should provide a 3′ → 5′ sequence if your sequence is not perfectly complementary, say like in a sequence
with nucleotide mismatches. Note that you also need to provide the necessary parameters for this.

(example 1) -cseq=TGCTACTTAA from 3′ → 5′

(example 2) "-seq=r(ACGUUGAAUU)" for hybrid DNA-RNA it is necessary to specially format the sequence.
Also, due to the parenthesis, it is necessary to enclose the option in double quotes, otherwise the bash command-
line interpreter will throw an error. See also 8.2.

3.3 Options for minimization (-calc=minlocal or -calc=minglobal)

3.3.1 -minmethod=<GSL or GBC>

This selects which algorithmic implementation of multidimensional minimization to use. Currently GSL (GNU
Scientific Library) produces better results.

(default) -minmethod=GSL GNU Scientific Library functions

-minmethod=GBC C++ textbook-like implementation

3.3.2 -var=<list of parameters>

The list of parameters for the minimization is given as in the following example

-var=AT_AT:entropy,AT_CG:entropy,AT_GC:entropy,AT_TA:entropy

you should use the same notation as in your .par file. See section 6 for a full description of available nearest
neighbour parameters.
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Associate variables You can associate variables, that is, you can ensure that different variables are treated as
if they were the same. For this simply assign one variable to the other with an equal sign as in the following
example

-var=AT_AT:entropy=AT_TA:entropy,AT_CG:entropy=AT_GC:entropy

here AT_AT:entropy and AT_TA:entropy will be take the same values, and so will AT_CG:entropy and AT_GC:entropy.
Effectively you would be reducing the number of variables to minimize from 4 to just 2, which accelerates the
calculation.

You can associate as many variables as you like, simply concatenate them with the equal sign. In the
following example all variables will be treated as the same

-var=AT_AT:entropy=AT_TA:entropy=AT_CG:entropy=AT_GC:entropy

effectively reducing them to a single variable.

Trick If your variable list is very long, you can use this bash trick to read in your list from a file

-var=$(cat my.list)

where my.list is the file containing your variables.

3.3.3 -limit=<numerical value>

Specifies when to give up minimizing. When your local minimization fails to improve with a value larger than
-limit the minimization should stop. If you specify a very small value you minimization may take a very long
time to complete. Note that the minimization will stop earlier depending on the value of -me (3.3.5).

(default) -limit=0.01

3.3.4 -cl=<numerical value>

This is the characteristic length used in the multidimensional minimization. Essentially, a larger -cl (3.3.4)
means that a wider region will be covered for minimization and potentially avoiding local minima. On the other
hand, a larger value will also mean longer processing times. The exact value is not critical but should typically
be of the order of magnitude of the variables listed in -var (3.3.2). For a better understanding of this parameter
please see numerical computation text book on downhill simplex methods [15].

(default) -cl=10

3.3.5 -me=<integer value>

Maximum consecutive evaluations without improvement of χ2 per minimization round. If this number is reached
before the limit -limit (3.3.3), the minimization will stop. In other words, if after -me evaluations there was
no change in χ2, VarGibbs stops trying. The purpose of this option is to avoid having VarGibbs run forever.

(default) -me=<a really large integer> in other words: do not stop ever. Implemented by C++ method
std::numeric_limits<int>::max() which provides the largest possible integer for the current system archi-
tecture.

3.3.6 -mm=<integer value>

This controls the number of minimization steps, see Figure 5.1. Each round stops when either -limit (3.3.3) or
-me (3.3.5) is reached. The minimization then immediately starts over, using the previous optimized parameters
as new initial variables. If you set -mm=0 then it will run to the highest integer number 2147483647, which in
practice means that it will never stop.

(default) -mm=2 , in other words, do at least one round.

(non-stop) -mm=0 run without stopping (maximal 2147483647), this generates a information message INFOMM0D.
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3.3.7 -zlog=<0 or 1>

If set, log files will be written gzip compressed. Other options to control log file size are -minloglevel (3.3.8)
and -loginterval (3.3.9), you may also simply turn off the generation of logfiles with -gn=0 (3.4.7).

(default) -zlog=0 , no log compression

-zlog=1 , all log filed will end in .gz and can be handled with common linux commands such as zcat (instead
of cat), zgrep (instead of grep) etc.

3.3.8 -minloglevel=<progress, full or terse>

(Introduced in version 3.1) Controls the amount of information in log files. During local or global minimization
the log files can grow to very large sizes, especially for large values of -me (3.3.5).

(default) -minloglevel=progress records a new entry in the long file only when there is an improvement
in χ2. This can be further controlled with option -loginterval (3.3.9).

-minloglevel=full records every minimization attempt, even when there was no change to χ2. This was the
default behaviour up to version 3.0.

-minloglevel=terse only records the last χ2 of each minimization round (rounds are controlled by -mm

(3.3.6)).

3.3.9 -loginterval=<time in seconds>

(Introduced in version 3.1) Specifies the minimum interval of time between recordings in log files for option
-minloglevel=progress (3.3.8). For example -loginterval=3600 will record a new entry roughly every hour.

(default) -loginterval=0 records continuously.

3.4 Options for global minimization (-calc=minglobal) only

3.4.1 -ee=<experimental error>

This sets the experimental error (in ◦C) of the melting temperature set. If given, the data set (provided through
the -data (3.1.5) option) with be modified by small positive or negative amounts such that the standard
deviation is close to the experimental error. The purpose of this is to simulate the effect of experimental
uncertainty on the parameters. We do not recommend to set this to a very large value as it may start rearranging
the order of sequence stability and may give really poor results. A reasonable interval is typically lower than
1 ◦C. See also -randomizedataset (3.4.2).

(example) -ee=0.5 will modify the dataset to within 0.5 ◦C

3.4.2 -randomizedataset=<0 or 1>

When -randomizedataset=1 is selected the randomization of the dataset is activated. The dataset given with
-data=<filename> will be changed by small amounts such that the standard deviation from the original dataset
equals -ee=<experimental error> (3.4.1). See section 5 for details.

(default) -randomizedataset=0 do not modify dataset

3.4.3 -randominitial=<fraction>

When given the initial values of the variables specified in the file given in -par (3.1.2) will be randomly modified.
For example

-randominitial=0.2

means that all initial values will be modified within ±20% every time a new local minimization starts. For
example if your parameter file contains
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GC_CG:enthalpy -11.1

and this parameter is listed in -var (3.3.2) a value of -randominitial=0.2 (3.4.3) will randomly chose a new
initial value for GC_CG:enthalpy within -8.88 and -13.32. This is applied to all variables listed in -var (3.3.2),
but only to those variables.

3.4.4 -mrr=<integer value>

Controls how many complete rounds of local minimizations are performed.

(default) -mrr=10 which is a relatively small number and should run in a couple of minutes. A more thorough
search should use values larger than 100 which may take several hours to run.

3.4.5 -adl=<integer value>

Stops the minimization if the limit for total average difference given in -adl is reached. VarGibbs will compare
the results of the current minimization with the previous one and compute de average differences of the param-
eters. A value such as -adl=0.1 means that the minimization will stop if on average the differences between
the previous parameters and the new parameters is less than 1%.

3.4.6 -asl=<integer value>

Similar to -adl (3.4.5) but considers the standard deviation instead of the average difference. In this sense
-asl=0.1 is a much more stricter stop criteria than -adl=0.1 (3.4.5). When this limit has been reach a
INFOLTSDDR is shown.

3.4.7 -gn=<0 or 1>

Controls the generation of files for -calc=minglobal (3.1.11). Global minimization generates a very large
number of files, easily reaching several Gb. If you are not interested in those files you may turn this option off
-gn=0. Note that if afterwards you change your mind you may simply run again and get exactly the same results
as long as you use the same seed for the random number generator -rs (3.1.7). Alternatively, if disk space is
a problem you may consider using the option -zlog=1 (3.3.7) instead, to compress log files up to a factor of
10. Other options that control the amount of information written are -minloglevel (3.3.8) and -loginterval

(3.3.9).

(default) -gn=1 , generate all files.

-gn=0 , suppress log file generation.

3.4.8 -printusedpar=<0 or 1>

Controls the printing of a file with extension .usedpar. that will output all parameters as they were read from
files given in -par (3.1.2). See section 5.5 for the output format.

(default) -printusedpar=0 does not generate a file

-printusedpar=1 generates a file with extension .usedpar., taking the base name from -o (3.1.1)

3.4.9 -debug=<predefined flags>

VarGibbs has several debug flags which print further information to stderr. Debug flags are currently sparsely
documented, are of limited interest to the use and are intended mainly for the developer. If critically needed
you may consult the contents of the source file ErrorCodes.h. Another possibility is to simply turn all flags
on by using -debug=ALL, but note that this will generate a huge amount of information and it is recommended
to redirect stderr to a file. See section A.2 for available debug flags. Sometimes it is useful to activate debug
flags using the environment variable, before running VarGibbs, for example

export VARGIBBS="-debug=DOPTSHEQ"

this helps debugging without actually touching your scripts.
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3.5 Options for salt correction

Experimental implementation of salt correction schemes (introduced in version 2.1) for the melting temperatures
Tm. Please note that these options may change in the future.

3.5.1 -cgeq=<list of base pairs> extends the CG fraction

Common to almost all salt correction schemes is that they use the fraction CG-content. For hybrids, this includes
dCrG and dGrC base pairs. If you need that other types of base pairs should be considered as equivalent to
CG you need to use this option.

(example) -cgeq=NF,HJ will consider NF and HJ as equivalent to CG base pairs, any occurrence of NF and
HJ will then count towards the calculation of the CG-content fraction. See also -dict (3.1.10) if you need to
use non-conventional representation for your nucleotides.

3.5.2 On which Tm will the correction be applied?

Depending on the argument of the -calc (3.1.11) option the correction may be applied to the input Tm or to
the predicted Tm.

-calc=nncheck the salt correction will be applied to the input Tm from the sequence files. The output files
will contain the adjusted Tm. The new file will be in the format discussed in chapter 8 and can be used as input
file again for other calculations.

-calc=prediction and -predsaltcorr=0 first apply the salt correction to the input Tm and place them in
the temperature.adjusted column, see section 4.1.1. Afterwards calculate the Tm from the given parameters
without applying any salt correction. This allows you to compare adjusted and predicted temperatures in one
file.

-calc=prediction and -predsaltcorr=1 first calculate the Tm from the given parameters and afterwards
apply the salt correction.

3.5.3 -seqsalt=<salt concentration in mM>

In cases when a single sequence was provided through the option -seq (3.2.1) you may also provide its salt
concentration.

(example) -seqsalt=121 -seq=CACGGCUC will set the [Na+] salt concentration of sequence CACGGCUC to
121 mM.

3.5.4 -targetsalt=<salt concentration in mM>

Set the target salt concentration to be used for all sequences in a dataset. If set to zero, or if not given, then
the target salt will be the ones listed in the dataset.

3.5.5 How to specify the salt concentration of the parameter set

In previous versions (before 2.1) it was not possible to specify the salt concentration for the parameter (-par
(3.1.2)). Now, you may manually edit the parameter file and add the new parameter Na+:concentration (in
mM), for example, add a new line with the salt concentration for these specific parameters:

xia98-original-table4

Na+:concentration 1000

AU_AU:enthalpy -6.82

AU_AU:entropy -19.0

AU_UA:enthalpy -9.38

AU_UA:entropy -26.7

Note: as of version 2.1 all parameter files in the TfReg package were edited to include the Na+:concentration
parameters, this generates a information message INFOSPSCT.
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3.5.6 How to specify the new salt concentration?

The [Na+] target salt concentration (in mM) that should be calculated.

-targetsalt=<Na+ salt concentration in mM>

(example) -targetsalt=71 will set the [Na+] target salt concentration at 71 mM.

(special case) -targetsalt=0 a target salt concentration explicitly set to zero instructs to use the sequence
concentration from the data file -data (3.1.5).

3.5.7 -saltscheme=<scheme code>

Salt corrections start from an existing melting temperature Tm(1) at concentration [Na+]1 and calculate a new
melting temperature Tm(2) at concentration [Na+]2. Each formula uses a number of coefficients which can be
changed through the parameter file. There are up to three coefficients f1, f2 and f3 which can be specified in
a file like this

data/owczarzy04eq21.spar
1 owczarzy04eq21

2 #doi: 10.1021/bi034621r

3 #use with -saltscheme=tm_ln

4 Na+:f1 -4.62

5 Na+:f2 4.52

6 Na+:f3 -0.985

this is exactly equivalent to Eq. (21) from Ref. 16 or to using -saltscheme=owczarzy04eq21. See also Table 9.1
for other parameter files.

Some schemes have their factors hardwired and a parameter file is optional.

Configurable salt factors

-saltscheme=tm ln This scheme is a generalization of Eq. (21) from Ref. 16

Tm(2) = Tm(1) +

[
f1
NCG

N
+ f2

]
ln

(
[Na+]2

[Na+]1

)
+ f3

(
ln2[Na+]2 − ln2[Na+]1

)
(3.1)

where Tm(1) is the temperature at [Na+]1 and Tm(2) at [Na+]2 where NCG are the number of bases pairs of
type CG, -cgeq (3.5.1), and N is the total number of base pairs.

-saltscheme=rec tm ln

1

Tm(2)
=

1

Tm(1)
+

[
f1
NCG

N
+ f2

]
ln

(
[Na+]2

[Na+]1

)
+ f3

(
ln2[Na+]2 − ln2[Na+]1

)
(3.2)

the temperatures are in kelvin, however VarGibbs will show the results converted to degrees celsius.

Fixed factors for DNA

Here we describe the correction schemes that have their factors build into VarGibbs and do not require these
factors to be given in a separate file.

-saltscheme=schildkraut65 from Ref. 17

Tm(2) = Tm(1) + f2 log10

(
[Na+]2

[Na+]1

)
(3.3)

where f2 = 16.6 ◦C, using the notation by Owczarzy et al. [16]. Note that this particular correction uses log10,
not ln, and the same correction can be achieved for -saltscheme=tm ln (3.5.7) by using f2 = 16.6/ ln(10).

16



-saltscheme=santalucia98 from Ref. 8. In fact, SantaLucia [8] introduces an entropy correction

∆S2 = ∆S1 + 0.368N ln[Na+]2 (3.4)

which was adapted by Owczarzy et al. [16] to

1

Tm(2)
=

1

Tm(1)
+

f1N

∆Htot

[Na+]2

[Na+]1
(3.5)

where originally f1 = 0.368 cal/K.mol. N is the length of the duplex, and ∆Htot the total sequence enthalpy
taken from the predicted enthalpy. If the predicted enthalpy is not given then the enthalpy found in the data
file is used. Note that the predicted entropy is never salt corrected.

-saltscheme=owczarzy04eq19 Eq. (19) from Ref. 16, same as Eq. (3.1) with fixed factors and f3 = 0.

-saltscheme=owczarzy04eq20 Eq. (20) from Ref. 16, same as Eq. (3.2) with fixed factors and f3 = 0.

-saltscheme=owczarzy04eq21 Eq. (21) from Ref. 16, same as Eq. (3.1) with fixed factors.

-saltscheme=owczarzy04eq22 Eq. (22) from Ref. 16, same as Eq. (3.2) with fixed factors.

Fixed factors RNA

-saltscheme=chen13eq19 Eq. (19) from Ref. 18

-saltscheme=chen13eq20 Eq. (20) from Ref. 18

-saltscheme=chen13eq21 Eq. (21) from Ref. 18

-saltscheme=chen13eq22 Eq. (22) from Ref. 18

Fixed factors DNA-RNA

-saltscheme=nakano99 A sodium correction factor from Ref. [9] that only works for converting from [Na+]1 =1000 mM
to [Na+]2 =100 mM. Any other combination of base and target sodium concentrations will generate an error.

3.5.8 Examples involving salt concentrations

Adjusting all temperatures in a dataset, generating a new dataset

Problem: you have a dataset of melting temperatures for a specific salt concentration and wish to generate a
new file with all those sequences but at a different salt concentration.

In the following example, we have a dataset D-SL96.dat where all temperatures are at [Na+] 1000 mM. We
wish to convert them to of 71 mM using the salt correction eq. (22) from Ref. 16.

vargibbs -data=D-SL96.dat -calc=nncheck -targetsalt=71 -saltscheme=owczarzy04eq22 -o=CORR

This generates a new file CORR.dat that has exactly the same format and sequences as D-SL96.dat but with
corrected temperatures to the new salt concentration.

Predict temperatures for a given parameter set and apply the salt concentration afterwards

Problem: you have a parameter set for a specific salt concentration but need to predict temperatures at a
different concentration.

In the following example, we calculate the melting temperature prediction at 71 mM for all sequences in
file D-SL96.dat, using the parameters P-XIA98.par (valid for 1000 mM), and then applying the salt correction
eq. (22) from Ref. 16.

vargibbs -data=D-SL96.dat -calc=prediction -par=P-XIA98.par -predsaltcorr=1 -targetsalt=71 \

-saltscheme=owczarzy04eq22 -o=CORR

Note that the file P-XIA98.par already has the new parameter Na+:concentration that tells the system that
those parameters were obtained for a specific salt concentration.
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4 Simple melting temperature prediction -calc=prediction

This is the simplest application of VarGibbs. In the following example we show how to obtain the melting
temperatures from the SantaLucia paper Ref. [8] with all sequences from the same paper:

examples/D-SL98-P-SL98.sh
1 vargibbs -calc=prediction -o=./D-SL98-P-SL98 -par=../data/P-SL98.par \

2 -data=../data/D-SL98.dat

Instead of a data file with sequences you may simply provide the sequence info directly in the command line
examples/sequence-AOP-CMB.sh

1 vargibbs -o=./sequence-AOP-CMB -par=../data/AOP-CMB.par \

2 -calc=prediction -v=1 -seq=ACGTTTTAAGGTTC -cseq=TGCAAAATTCCAAG -ct=200

All results are collected in the file with extension .dat described in the next section.

4.1 Files generated for prediction

4.1.1 Extension .dat sequence information and results

The file with extension .dat shows all sequences (format of this file is identical with extension .ver of lo-
cal/global minimization).

examples/verify/D-SL98-P-SL98/D-SL98-P-SL98.dat
1 Main/Complementary alpha salt_concentration species_concentration temperature.measured ...

2 CCGG/GGCC 1 1000 100 16.6 16.6 12.8709 0 0 -26.4 0 0 -74 0 0 0 0 0 #santalucia98 ...

3 CGCG/GCGC 1 1000 100 23.7 23.7 22.7167 0 0 -30.8 0 0 -85.8 0 0 0 0 0 #santalucia98 ...

4 AGCCG/TCGGC 4 1000 400 35.6 35.6 35.5231 0 0 -33.8 0 0 -91.2 0 0 0 0 0 #santalucia98 ...

5 CACAG/GTGTC 4 1000 400 19.1 19.1 19.6603 0 0 -33 0 0 -94.4 0 0 0 0 0 #santalucia98 ...

6 ACCGCA/TGGCGT 4 1000 400 43.1 43.1 48.0789 0 0 -40.7 0 0 -108.4 0 0 0 0 0 #santalucia98 ...

7 AGTTGC/TCAACG 4 1000 400 37.3 37.3 35.2518 0 0 -40 0 0 -111.4 0 0 0 0 0 #santalucia98 ...

8 ATGCGC/TACGCG 4 1000 400 44.5 44.5 46.4657 0 0 -43.5 0 0 -117.8 0 0 0 0 0 #santalucia98 ...

9 CCAACG/GGTTGC 4 1000 400 37.7 37.7 39.2123 0 0 -43.2 0 0 -120 0 0 0 0 0 #santalucia98 ...

10 CCGCGG/GGCGCC 1 1000 100 55.2 55.2 52.0737 0 0 -46.8 0 0 -125.6 0 0 0 0 0 #santalucia98 ...

The first column are the sequences, the second column indicates if the sequence is self-complementary (4) or not
(1). Then comes the salt concentration (1000) in mM, the species concentration (100 or 400) in µM, the measured
melting temperatures (columns 5 and 6), the predicted melting temperature (column 7). The predicted total
enthalpy and total entropy variations are given in columns 10 and 13, respectively. The remaining columns (all
with null values) are not used in the context of VarGibbs and maintained for compatibility with other programs.

For the case when a single sequence was given this file will look like this
examples/verify/sequence-AOP-CMB/sequence-AOP-CMB.dat

1 Main/Complementary alpha salt_concentration species_concentration temperature.measured ...

2 ACGTTTTAAGGTTC/TGCAAAATTCCAAG 4 0 200 0 0 65.0278 0 0 -90.868 0 0 -249.021 0 0 0 ...

4.1.2 Extension .ver quality of the prediction and verification
examples/verify/D-SL98-P-SL98/D-SL98-P-SL98.ver

1 average diff_deviation sqr_diff sqrt_diff2 relative_sqr_diff N

2 Tm 1.88066 1.57065 648.413 2.45027 0.345513 108

where the first number is the average difference in melting temperature prediction

〈∆T 〉 =
1

N

N∑
i=1

|∆Ti| , (4.1)
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the second is the standard deviation of ∆Ti,

δ(∆T ) =

√√√√ 1

N

N∑
i=1

[∆Ti − 〈∆T 〉]2 (4.2)

the third is χ2 given by Eq. (5.1),

χ2 =
∑
i

∆T 2
i

the fourth is

〈∆T 〉RMS =

√√√√ 1

N

N∑
i=1

[∆Ti]
2

=

√
χ2

N
. (4.3)

and the last the relative squared difference

〈
∆T

T

〉
RMS

=

√√√√ 1

N

N∑
i=1

[∆Ti]
2

Ti
, (4.4)

4.1.3 Recalculating temperatures for different species concentrations

Sometimes you may need melting temperatures for different species concentration Ct. In this case the options
-ct (3.1.8) and -mct (3.1.9) may be useful. The option -ct (3.1.8) defines a new Ct common to all sequences,
while -mct (3.1.9) multiplies Ct by a certain factor. The second option is useful for files containing symmetry
adjusted melting temperatures, where self-complementary sequences are 1/4 of the Ct of other sequences.
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5 Obtaining parameters from minimization

5.1 Why would you want to do this?

You may wish to apply VarGibbs in the following practical situations:

1. You have a number of melting temperatures, measured at several species concentrations and you need the
best nearest-neighbour enthalpies and entropies.

2. You have a number of melting temperatures, and you do not have the total entropies and enthalpies and
you need the best nearest-neighbour enthalpies and entropies.

3. You already have the nearest-neighbour enthalpies and entropies from other methods, but wish to obtain
a new set with hopefully better predictive capabilities.

4. You already have the nearest-neighbour enthalpies and entropies from other methods and would like to
estimate the uncertainty of these parameters.

5.2 What is the idea?

The basic idea behind the implementation of VarGibbs is to minimize

χ2 =
∑
i

[Ti − T ′i (Pk)]
2

(5.1)

where Ti are the measured melting temperatures for the ith sequence, and T ′i are the predicted temperatures
according a set of parameters Pk. We start with an initial set of parameters P0 and let the parameters Pk vary
until we minimize as much as possible χ2. After N steps of minimizations the resulting set PN represent the
parameters which best reproduce the melting temperatures for model M .

5.3 Global and local minimizations

VarGibbs knows about two types of minimizations, global and local. In the following sections we will describe
these in details, but essentially a global minimization is a number of local minimization. We will first describe
the local minimization which is easier to understand and introduce the main concepts. Figure 5.1 shows an
overview of the two types on minimizations and some of the main options related to each step.

5.4 Local minimization (-cal=minlocal)

The local minimization is to use the unmodified Ti experimental melting temperatures and a set of initial
parameters P0 which are read from the parameter file given by -par (3.1.2). An example command line would
be

vargibbs -var=AT_AT:entropy,AT_CG:entropy,AT_GC:entropy,AT_TA:entropy -data=experimental.dat \

-calc=minlocal -o=results -par=test.par

The quality of results will depend very much on your initial guess of variables in file test.par. The reason
for this are local minima, that is the function χ2 has numerous minima and your minimization may get “stuck”
at non-optimal values. One solution, which may yield acceptable results is to carefully select generic initial
parameters. In the following example this is achieved by a parameter file like this

data/init s98.par
1 init-s98

2 *:entropy -23

3 *:enthalpy -8
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Figure 5.1
Workflow and dependencies of global and local minimizations in VarGibbs.

4 terminal_CG_enthalpy 2.0

5 terminal_CG_entropy -5.0

6 terminal_AT_enthalpy 5.0

7 terminal_AT_entropy 10.0

8 symmetry_correction_entropy -1.0

where we selected an entropy of -23 and an enthalpy of -8 for any nearest-neighbour context.
The complete example script, which should take about 20 s to run, is

examples/SL98-local.sh
1 vargibbs -cl=10 -me=3000 -minmethod=gsl -mm=3 -o=./SL98-local \

2 -par=../data/init_s98.par \

3 -parid=test -calc=minlocal -data=../data/D-SL98.dat \

4 -var=AT_AT:entropy,AT_CG:entropy,AT_GC:entropy,AT_TA:entropy,CG_AT:entropy,CG_CG:entropy,...

5

6 vargibbs -o=./SL98-local-prediction -par=./SL98-local.par \

7 -calc=prediction -data=../data/D-SL98.dat

lines 6–7 calculate the prediction from the optimised parameter file SL98-local.par which has the following
quality of the prediction file

examples/verify/SL98-local/SL98-local-prediction.ver
1 average diff_deviation sqr_diff sqrt_diff2 relative_sqr_diff N

2 Tm 1.50292 1.1753 393.129 1.9079 0.219436 108

see Sec. 4.1.2 for details about these numbers.

5.4.1 Files generated for local minimization

Extension .dat: melting temperatures and melting index results

One of the main result files has the extension .dat and contains the optimized parameters. However thes files
are not easy to read, you may prefer to inspect the parameter file .par instead.

Here is an output of the previous example:
examples/verify/SL98-local/SL98-local.dat

1 393.129 -7.74456 -21.9304 -10.2102 -28.7311 -6.27733 -16.4984 -3.29831 -8.39649 ...

The first number is the final χ2, the remaining numbers are the optimized parameters which were given in -var

(3.3.2) (in lexical order).
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Extension .par: reusable parameter file

The optimized parameters are also stored in a file with extension .par in addition to initial generic parameters
examples/verify/SL98-local/SL98-local.par

1 test

2 #parameter map has 27 elements

3 *:enthalpy -8 [-8.000000:/home/ge/svn/bioinf/distribution/var-gibbs/data/init_s98.par] (10)

4 *:entropy -23 [-23.000000:/home/ge/svn/bioinf/distribution/var-gibbs/data/init_s98.par] (10)

5 AT_AT:enthalpy -7.74456 [* -8.000000:new] (18842)

6 AT_AT:entropy -21.9304 [* -23.000000:new] (18842)

7 AT_CG:enthalpy -10.2102 [* -8.000000:new] (18842)

8 AT_CG:entropy -28.7311 [* -23.000000:new] (18842)

9 AT_GC:enthalpy -6.27733 [* -8.000000:new] (18842)

10 AT_GC:entropy -16.4984 [* -23.000000:new] (18842)

11 AT_TA:enthalpy -3.29831 [* -8.000000:new] (18842)

12 AT_TA:entropy -8.39649 [* -23.000000:new] (18842)

13 CG_AT:enthalpy -11.1112 [* -8.000000:new] (18842)

14 CG_AT:entropy -31.3799 [* -23.000000:new] (18842)

15 CG_CG:enthalpy -8.56919 [* -8.000000:new] (18842)

16 CG_CG:entropy -21.8905 [* -23.000000:new] (18842)

17 CG_GC:enthalpy -9.64746 [* -8.000000:new] (18842)

18 CG_GC:entropy -24.6633 [* -23.000000:new] (18842)

19 GC_AT:enthalpy -8.04907 [* -8.000000:new] (18842)

20 GC_AT:entropy -21.867 [* -23.000000:new] (18842)

21 GC_CG:enthalpy -11.626 [* -8.000000:new] (18842)

22 GC_CG:entropy -30.7114 [* -23.000000:new] (18842)

23 TA_AT:enthalpy -3.04064 [* -8.000000:new] (18842)

24 TA_AT:entropy -8.19177 [* -23.000000:new] (18842)

25 symmetry_correction_entropy -0.292102 [* -1.000000:/home/ge/svn/bioinf/distribution/var-gibbs/data/init_s98.par] (18844)

26 terminal_AT_enthalpy 2.17672 [* 5.000000:/home/ge/svn/bioinf/distribution/var-gibbs/data/init_s98.par] (18844)

27 terminal_AT_entropy 4.50153 [* 10.000000:/home/ge/svn/bioinf/distribution/var-gibbs/data/init_s98.par] (18844)

28 terminal_CG_enthalpy 1.79407 [* 2.000000:/home/ge/svn/bioinf/distribution/var-gibbs/data/init_s98.par] (18844)

29 terminal_CG_entropy 3.35923 [* -5.000000:/home/ge/svn/bioinf/distribution/var-gibbs/data/init_s98.par] (18844)

30

This parameter file can be reused in other minimization rounds or for the global minimizations discussed in the
next section.

Extension .log: minimization history

The file .log records the complete minimization history and therefore is quite extensive.
examples/verify/SL98-local/SL98-local.log

100 797 567.707 -8.08438 -22.9703 -8.07911 -21.702 -8.22099 -22.2126 -8.05926 -22.9261 ...

101 818 567.254 -8.08949 -22.9658 -8.07179 -21.6844 -8.21524 -22.2327 -8.06465 -22.9304 ...

102 837 566.363 -8.09293 -22.9592 -8.07295 -21.6882 -8.21894 -22.23 -8.06101 -22.9301 ...

103 839 565.206 -8.08707 -22.9587 -8.06474 -21.6733 -8.20445 -22.2494 -8.08262 -22.942 ...

104 858 564.95 -8.07877 -22.9394 -8.07131 -21.6893 -8.2085 -22.2435 -8.06877 -22.8949 ...

105 865 563.94 -8.06515 -22.9027 -8.07567 -21.6856 -8.20816 -22.2259 -8.06176 -22.9513 ...

106 867 563.856 -8.07958 -22.957 -8.07794 -21.6904 -8.20997 -22.2364 -8.0686 -22.9 -8.01153 ...

107 875 563.229 -8.07775 -22.9298 -8.07224 -21.6908 -8.21368 -22.2364 -8.06419 -22.9185 ...

108 884 562.996 -8.084 -22.9461 -8.07244 -21.6799 -8.21725 -22.2316 -8.05396 -22.9258 ...

109 886 562.941 -8.07068 -22.9332 -8.07174 -21.6784 -8.20953 -22.2434 -8.06674 -22.9111 ...

110 889 562.528 -8.07509 -22.9325 -8.07104 -21.6809 -8.20553 -22.2348 -8.06534 -22.9174 ...

The first column is the number of evaluation steps which stops at a maximum defined by -mm (3.3.6). The
remaining columns are as in the file with extension .dat. Please note that the file ending with .log.best is
always empty.

Extension .ver quality of the prediction and verification

The file with extension .ver shows all sequences .
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examples/SL98-local/SL98-local.ver
221 TAGATCTA/ATCTAGAT 1 1000 100 33.4 33.4 29.9888 0 0 -33.6789 0 0 -92.7998 0 0 0 0 ...

222 TAGGCCTA/ATCCGGAT 1 1000 100 51.9 51.9 49.3886 0 0 -43.0468 0 0 -115.162 0 0 0 0 ...

223 TATGCATA/ATACGTAT 1 1000 100 37.8 37.8 36.4028 0 0 -42.1727 0 0 -117.937 0 0 0 0 ...

224 TCTATAGA/AGATATCT 1 1000 100 28.1 28.1 29.9888 0 0 -33.6789 0 0 -92.7998 0 0 0 0 ...

225 TGAGCTCA/ACTCGAGT 1 1000 100 50.1 50.1 50.2665 0 0 -58.1476 0 0 -161.491 0 0 0 0 ...

226 AAAAAAAAA/TTTTTTTTT 4 1000 400 39.4 39.4 38.6545 0 0 -57.603 0 0 -166.44 0 0 0 0 ...

227 ATAACTGGC/TATTGACCG 4 1000 400 54 54 51.8572 0 0 -57.9065 0 0 -159.869 0 0 0 0 0 ...

228 ATCTATCCG/TAGATAGGC 4 1000 400 51.1 51.1 52.1312 0 0 -46.2586 0 0 -123.91 0 0 0 ...

229 CAAAAAAAG/GTTTTTTTC 4 1000 400 44.2 44.2 42.3168 0 0 -60.2677 0 0 -172.742 0 0 0 ...

230 CAAACAAAG/GTTTGTTTC 4 1000 400 47.3 47.3 45.7217 0 0 -66.0999 0 0 -188.992 0 0 0 ...

The first column are the sequences, the second column indicates if the sequence is self-complementary (4) or not
(1). Then comes the salt concentration (1000) in mM, the species concentration (100 or 400) in µM, the measured
melting temperatures (columns 5 and 6), the predicted melting temperature (column 7). The predicted total
enthalpy and total entropy variations are given in columns 10 and 13, respectively. The remaining columns (all
with null values) are not used in the context of VarGibbs and maintained for compatibility with other programs.

5.5 .usedpar summary of parameters read and used

If -printusedpar=1 (3.4.8) is given, VarGibbs will generate an additional file with extension .usedpar which
shows which parameters were read from which file, and how many times they were used.

The rules for files of type .usedpar are summarized here

parameter value [* value:FILE3 <> value:FILE2 = value:FILE1] (N)

The files are shown in reverse order from how they were read, that is, they were read in order FILE1, FILE2
and last FILE3. The specific value of the parameter is shown in front of the file name value:FILE3. The signs
indicate if the values were the same as of the previous file (=) or different (<>), and (*) means that the parameter
was changed internally, after reading all files. The number of times this parameter was called internally is given
by N, although this reflects only the number of times it was searched in the database and not the number of
times it was employed in equations. However, it is accurate when displaying zero meaning it was really never
used.

5.6 Global minimizations (-calc=minglobal)

One way to overcome the problem of local minima is to perform several local minimization. The option
-calc=minglobal (3.1.11) automates this process, see Figure 5.1 for an overview and how local and global
minimization relate to each other. There are two basic global minimization strategies, one which varies the
initial parameters randomly and the other varies the experimental data by small random amounts.

5.6.1 Varying the initial parameters (-randominitial)

The idea here is to start the local minimization anew each time with a different set of initial parameters
P0,l, where l is the index for a given set of initial parameters. VarGibbs will then start the minimization by
randomizing the initial parameters. In the next example we modified the example of the previous section by
changing -calc=minglobal (3.1.11) and -randominitial=0.2 (3.4.3), which modifies the initial parameters by
up to 20%.

vargibbs -var=AT_AT:entropy,AT_CG:entropy,AT_GC:entropy,AT_TA:entropy -data=experimental.dat \

-calc=minglobal -o=results -randominitial=0.2

VarGibbs will carry on repeating the minimization over and over, every time for a new set of initial parameters
P0,l until you tell VarGibbs to stop or until the maximum number of minimizations given by -mrr (3.4.4) is
reached.

VarGibbs will show a standard output when variables are changed:

Warning:replacing AT_AT:enthalpy old value=-9.3522 new value=-8.41043

Warning:replacing AT_AT:entropy old value=-26.487 new value=-18.8472

A complete example which should take few minutes to run:
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examples/SL96-global.sh
1 vargibbs -calc=minglobal -cl=10 -data=../data/D-SL96.dat -gn=1 \

2 -me=3000 -minmethod=gsl -mm=6 -mrr=10 \

3 -o=./BOP-SL96 -zlog=0 -par=../data/init_s96.par \

4 -parid=BOP-SL96 -randominitial=0.5 -randomizedataset=0 -rs=1234 \

5 -var=AT_AT:entropy,AT_CG:entropy,AT_GC:entropy,AT_TA:entropy,CG_AT:entropy,\

6 CG_CG:entropy,CG_GC:entropy,GC_AT:entropy,GC_CG:entropy,TA_AT:entropy,\

7 AT_AT:enthalpy,AT_CG:enthalpy,AT_GC:enthalpy,AT_TA:enthalpy,CG_AT:enthalpy,\

8 CG_CG:enthalpy,CG_GC:enthalpy,GC_AT:enthalpy,GC_CG:enthalpy,TA_AT:enthalpy,\

9 initiation_CG_entropy,initiation_AT_entropy,\

10 terminal_5TA3_enthalpy,symmetry_correction_entropy

5.6.2 Varying the experimental temperatures (-randomizedataset)

This type of minimization should be carried out once you have a fairly good set of optimized parameters,
therefore we do not recommend to use this type of minimization as your first attempt. This step is mainly used
to evaluate the influence of the reported experimental uncertainty over the calculated parameters.

Here, we use a fixed set of initial parameters P0, as in the simple minimization, but for every round of
minimization we slightly change the experimental melting temperatures Ti by random amounts ∆Ti. The
standard deviation between the original set and the new artificial set will be close to the specified experimental
error given in -ee (3.4.1).

examples/SL96-global.sh
12 vargibbs -asl=0.1 -calc=minglobal -cl=10 -data=../data/D-SL96.dat -gn=1 -ee=0.3 ...

13 -o=./AOP-SL96 -zlog=0 -par=./BOP-SL96.par.best -parid=AOP-SL96 \

14 -randomizedataset=1 -rs=1234 \

15 -var=AT_AT:entropy,AT_CG:entropy,AT_GC:entropy,AT_TA:entropy,CG_AT:entropy,\

16 CG_CG:entropy,CG_GC:entropy,GC_AT:entropy,GC_CG:entropy,TA_AT:entropy,\

17 AT_AT:enthalpy,AT_CG:enthalpy,AT_GC:enthalpy,AT_TA:enthalpy,CG_AT:enthalpy,\

18 CG_CG:enthalpy,CG_GC:enthalpy,GC_AT:enthalpy,GC_CG:enthalpy,TA_AT:enthalpy,\

19 initiation_CG_entropy,initiation_AT_entropy,\

20 terminal_5TA3_enthalpy,symmetry_correction_entropy

here we are using as initial parameters the best optimization

AOP-SL96.par.best

from the example in the previous section.

5.6.3 Files generated during global minimization

For global minimization you will get the same files for local minimizations listed in section 5.4.1 but appended
by a number like .dat.00013.

list of files for multiple minimzation
BOP-SL96.dat.00003 BOP-SL96.par.00003 BOP-SL96.var.00003

BOP-SL96.log.00003 BOP-SL96.reg.00003 BOP-SL96.ver.00003

BOP-SL96.dat.00004 BOP-SL96.par.00004 BOP-SL96.var.00004

BOP-SL96.log.00004 BOP-SL96.reg.00004 BOP-SL96.ver.00004

The number indicates the local minimization round, otherwise these files are the same as for the simple min-
imization files described in section 5.4.1. The multiple minimization produces a very large number of files,
therefore is it recommended to run in a separate folder. Alternatively, one may set -gn=0 (3.4.7) which will
suppress the output of the files appended by numbers. Other options to control the size of the log files are
-zlog (3.3.7), -minloglevel (3.3.8) and -loginterval (3.3.9).

The additional extension .best are the results for the lowest χ2 found, and extension .par.average contains
the average parameter values. These files are updated at every round.

One file here is of special importance, the one ended with extension .dat will contain all results together.
examples/verify/SL96-global/BOP-SL96.dat

1 529.123 -7.78225 -22.0386 -6.69507 -17.386 -2.52987 -4.87858 -0.30404 1.3981 -8.31749 ...

2 526.166 -9.85229 -27.997 -9.83689 -26.2417 -5.23629 -12.4947 -3.739 -8.55061 -8.56265 ...

3 525.7 -8.34932 -23.7104 -8.19589 -21.7873 -3.99421 -9.25101 -3.63315 -8.67596 -7.08778 ...

4 522.633 -7.67022 -21.7605 -9.56615 -26.0226 -6.01695 -15.4755 -7.06485 -18.9828 ...
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5 525.7 -9.56528 -27.1325 -10.0257 -26.703 -5.94954 -14.6551 -5.38924 -13.3807 -8.05901 ...

6 526.799 -9.14595 -26.0312 -8.13573 -21.4327 -3.76715 -8.42463 -2.46223 -5.02819 ...

7 525.65 -9.84787 -28.0093 -9.37822 -24.8516 -4.95642 -11.7463 -3.838 -8.88293 -7.93385 ...

8 525.32 -7.23913 -20.438 -8.23796 -21.9436 -5.172 -12.886 -4.8005 -11.9916 -5.97586 ...

9 526.163 -10.8941 -31.0525 -10.0609 -26.9002 -3.17534 -6.13705 -3.37308 -7.63218 ...

10 525.294 -9.30893 -26.348 -10.0388 -26.796 -5.78086 -14.1626 -4.97548 -12.1637 -7.78641 ...

Where are your best results?

Your best results, that is, those with smallest χ2 are easily accessible by locating the files ending in .best.
Please note that the file .log.best will be empty as this file is written after the minimization has ended.

example of list of files related to smallest χ2

BOP-SL96.dat.best BOP-SL96.par.best BOP-SL96.reg.best BOP-SL96.var.best BOP-SL96.ver.best

Where are your average results?

It may be more sensible to work with average results as your may be overfitting your data. When using
-calc=minglobal (3.1.11) the average values are listed in the files ending with .average.

5.6.4 How to stop VarGibbs when in -calc=minglobal mode?

If you did not specify the maximum rounds of minimization -mrr (3.4.4), -asl (3.4.6), or -adl (3.4.5), then
VarGibbs will run non-stop. You may analyse your intermediate results at any time and then stop VarGibbs
when you feel that you have gathered enough data. Of course, when this happen you may simply kill the process
if you like. But a cleaner way to do this is to set the .proceed file to 0. Suppose your results file start all with
test (-o=test (3.1.1))

echo 0 > test.proceed

before restarting the next minimization VarGibbs will check this file, if it is 0 it will then stop and cleanly close
all files.

5.6.5 Work flow suggestion for global minimization

1 Get the melting temperatures either from a paper or format your own data according to section 3.1.5.
Make sure you have the correct values for species concentration Ct in 10−6 mol/L (µM). You can mix
data with different species concentrations, but not with different salt concentrations.

2 Define your initial parameters , ideally start the the most generic values possible, such as in file data/gibbs-av.par.

3 Run global minimizations with varying initial parameters . For this step follow the recommenda-
tions in section 5.6.1. Let it run for as many times as practically possible, but at least 100 times (2 h).
It will take about two days if you let it run 1000. You may also monitor your results continuously as
described in section 5.6.4, and then interrupt when you are satisfied.

4 Get the best parameters as described in section 5.6.3.

5 Run global minimizations to obtain error estimates as described in section 5.6.2. Use the best pa-
rameters from step 4 as initial parameters.

6 Use the averages obtained in the last step (see 5.6.3 on how to get them). They should represent the data
you are looking for.
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6 Model parameters

6.1 Naming scheme

6.1.1 Base pairs (BP)

Base pairs (BP) are simply given by two characters like AT, CG for DNA and AU, CG for RNA. Note that different
non-canonical base pairs may be given such as GU or AA, this will work as long as there are parameters for
them in your parameter file (see 6.3). If you wish to use different characters, use the -dict option (see 3.1.10),
otherwise anything different from from ACGTU will be silently ignored.

Hybrid DNA-RNA

an additional character is required, d for the DNA strand and r for RNA strand. For example dCrG means C
on the DNA strand and G on the RNA strand. VarGibbs should be able to read a construct such as dCdG for
DNA-DNA or rCrG for RNA-RNA, however this is generally unnecessary.

Locked Nucleic Acids (LNA)

Locked Nucleic Acids (LNA) modifications are typically written with a prepended plus sign [50], for instance,
a LNA modified is typically shown as as +A. However, currently VarGibbs can only handle single characters
to represent a nucleotide. Therefore we will employ an arbitrary naming scheme for LNA modified nucleotides
shown in Tab. 6.1.

6.1.2 Nearest neighbours (NN)

Nearest neighbours (NN) are two sequential base pairs (BP) joined with an underscore character _ as in BP_BP.
For example AT followed by CG should be written as AT_CG. For hybrid DNA-RNA an example would be
dArU_dCrG.

The convention used by VarGibbs is of write AB_CD, where AB is the first base pair and CD the second base
pair such that

5′ −AC− 3′

3′ − BD− 5′

Symmetry reduction. Note that DC_BA is equivalent to AB_CD,

5′ −AC− 3′

3′ − BD− 5′
←→ 5′ −DB− 3′

3′ − CA− 5′

for example, AT_AT is the same as TA_TA. When specifying a NN sequence always specify in lexical ordering,
that is write AT_AT and not TA_TA. If you do use TA_TA VarGibbs will silently ignore it.

6.2 Parameter types

The are basically two groups of parameters in the nearest neighbour model: context-dependent parameters and
initiation parameters. The context-dependent parameters are the ones that give this model its name, they are

LNA modified nucleotide representation
+G N

+A W

+C Z

+T R

Table 6.1
Naming convention for LNA. To use LNA nu-
cleotide representation convert to these characters
and add -dict=W:W,R:R,Z:Z,N:N to the program
options.

26



dependent on the nearest neighbours. All other parameters are dependent on some specific features of a given
sequence, for example a parameter which add some amount to the entropy if there is an AT base pair at the
end. These parameters are generally called initiation parameters and largely represent the idea that the melting
may be initialized by the presence of one of these features. Table 6.2 summarizes the parameters known to
VarGibbs.
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Parameter Type Description
BP_BP:entropy NN the hybridization entropy for a given NN pair formed by

two consecutive base pairs
BP_BP:enthalpy NN the hybridization enthalpy for a given NN pair formed

by two consecutive base pairs
initiation_CG_entropy init. if the sequence contains a at least one CG base pair [19]
initiation_CG_enthalpy init. if the sequence contains a at least one CG base pair
initiation_AT_entropy init. if the sequence contains only AT (or AU) base pairs [19]
initiation_AT_enthalpy init. if the sequence contains only AT (or AU) base pairs
terminal_CG_enthalpy init. for each terminal CG base pair [8]
terminal_CG_entropy init. for each terminal CG base pair [8]
terminal_AT_enthalpy init. for each terminal AT base pair [8]
terminal_AT_entropy init. for each terminal AT base pair [8]
terminal_AU_enthalpy init. for each terminal AU base pair
terminal_AU_entropy init. for each terminal AU base pair
terminal_5TA3_enthalpy init. for each terminal 5′-TA-3′ base pair [19]
terminal_dArU_enthalpy init. for each terminal dArU base pair [10]
terminal_dArU_entropy init. for each terminal dArU base pair [10]
terminal_dTrA_enthalpy init. for each terminal dArU base pair [10]
terminal_dTrA_entropy init. for each terminal dArU base pair [10]
terminal_dCrG_enthalpy init. for each terminal dCrG base pair [10]
terminal_dCrG_entropy init. for each terminal dCrG base pair [10]
terminal_dGrC_enthalpy init. for each terminal dGrC base pair [10]
terminal_dGrC_entropy init. for each terminal dGrC base pair [10]
Terminal_dCrG_dGrC_enthalpy init. applied once if sequence contains at least a terminal

dCrG or dGrC base pair [20]
Terminal_dCrG_dGrC_entropy init. applied once if sequence contains at least a terminal

dCrG or dGrC base pair [20]
Terminal_dArU_dTrA_only_enthalpy init. applied once if sequence contains a terminal dArU or

dTrA at both ends [20]
Terminal_dArU_dTrA_only_entropy init. applied once if sequence contains a terminal dArU or

dTrA at both ends [20]
symmetry_correction_entropy init. correction applied to self-complementary sequences [8,

19]
symmetry_correction_enthalpy init. correction applied to self-complementary sequences
initiation_entropy init. a fixed correction applied to all sequences
initiation_enthalpy init. a fixed correction applied to all sequences
Na+:concentration [Na+] concentration (in mM) for which the parameter

set is valid. Introduced in version 2.1
Na+:f1, Na+:f2, Na+:f3 factor f1, f2, f3 for salt corrections. Introduced in ver-

sion 3.2

Table 6.2
Summary of parameters known to VarGibbs. Entropies are given in cal/K·mol and enthalpies in kcal/mol. All parameter
names are case sensitive. Terminal parameters starting lowercase terminal are applied for each terminal occurrence,
that is either once or twice. Starting uppercase Terminal will be applied just once per duplex.
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6.3 Parameter file specification

This section explains how to write a parameter file. Let’s start with the simplest possible parameter file
data/generic-bp.par

1 gibbs

2 *:entropy -23.6

3 *:enthalpy -8.4

4 initiation_CG_entropy -5.9

5 initiation_AT_entropy -20

6 terminal_5TA3_enthalpy 0.4

7 symmetry_correction_entropy -20

Line 1 holds a simple identifier and should not contain spaces. The following lines hold the actual parameters,
one parameter per line, first the parameter identification and next the value. Everything else in the line is
ignored and can be used for annotation. Since version 3.1, a line having # at the first column will be ignored
and can be used for documentation or other useful annotations.

Shown in lines 2 and 3 are parameters of type generic, see section 6.3.1. Lines 4 to 7 show specific parameters.

6.3.1 Generic * parameters

The generic base * specification can be used when a given parameter should be applied to any base pair (see
previous example). This will only be used if a specific parameter can not be found, see section 6.3.4 on parameter
precedence.

6.3.2 Independent parameters

Independent parameters are those which do not depend on context changes of the sequences. Examples are
initiation_CG_entropy and terminal_5TA3_enthalpy.

6.3.3 NN parameters

VarGibbs has only two NN parameters, enthalpy and entropy. They are specified by AB_CD joined by : to
enthalpy or entropy, as in the following example.

Examples of NN parameters
1 AT_GT:enthalpy 1.0

2 AT_GT:entropy 0.9

If several NNs share the same parameters you may write this as in the following example, joining all NNs
with semicolons.

Multiple NNs
1 AT_GT:AT_TG:enthalpy 1.0

2 AT_GT:AT_TG:entropy 0.9

3 GC_GT:TG_CG:GT_GT:enthalpy 3.3

4 GC_GT:TG_CG:GT_GT:entropy 10.4

Note that GC_GT is equivalent to TG_CG, due to symmetry, and will be ignored as explained in 6.1.2.

6.3.4 Parameter precedence

Since the program can read more than one parameter file, the last parameter read is the final value. There may
also be several specification in the same file as well. Consider the following example

Precedence example 1
1 *:enthalpy -6.0

2 AT_AT:enthalpy -10.0

the first line says that all nearest-neighbours should a enthalpy value of -6.0. The second line however says that
AT_AT nearest-neighbours should use -10.0. In this case GC_AT base pairs for instance will use -6.0 since nothing
different was specified. If you are unsure how your parameters were read, we suggest using -printusedpar=1

(3.4.8).
However, a generic nearest-neighbours * does not supersedes a specific nearest-neighbours as in the following

example
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Precedence example 2
1 AT_AT:enthalpy -10.0

2 *:enthalpy -6.0

in this case AT_AT nearest-neighbours will continue using -10.0, not -6.0. You should understand the generic
nearest-neighbours * as: if nothing else matches, use this value.
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7 Sequence decomposition

Here we will explain, using examples, how VarGibbs takes a duplex sequence and breaks it down into its NN
components. This is a crucial aspect of the software and understanding it may avoid some common pitfalls.
The following examples were generated using the -calc=nncheck (3.1.11) option.

7.1 Example for a single sequence GACGTC/CTGCAG

The sequence GACGTC/CTGCAG corresponds to the molecule

5′ −GACGTC− 3′

3′ − CTGCAG− 5′

we will pass this to the program as in the following example
examples/sequence-nncheck.sh

1 vargibbs -o=./sequence -seq=GACGTC -cseq=CTGCAG -calc=nncheck -v=1

which will generate a file called sequence.nncheck which contains everything we could determine about this
sequence. Here, we will go through some of the information that is generated. Among the first lines we get

examples/verify/sequence-nncheck/sequence.nncheck
1 Dataset entry: GACGTC/CTGCAG 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 * General characteristics

3 Salt_concentration_[Na+]: 0

4 Ct_concentration: 0

5 Length: 6 Has_CG: 1 Is_AT_only: 0 Self_complementary: 1 CG_content: 4 fCG: 0.666667

where it is shown if the file is self-complementary (1 is yes, 0 is no), and its CG-content. Further in the file we
will see how it is broken down into NNs as

19 Exact_neighbours : GC_AT AT_CG CG_GC GC_TA TA_CG (5)

Then the symmetry reduction is applied (see 6.1.2)

20 Reduced_neighbours : GC_AT AT_CG CG_GC AT_CG GC_AT (5)

meaning that actually this sequence has only 3 different types of NN as shown in the summary

26 Reduced_neighbours_set : (3) AT_CG=2 CG_GC=1 GC_AT=2

VarGibbs also analyses the terminal characteristics

6 * Terminal characteristics

7 Terminal base pairs at 5: GC

8 Terminal base pairs at 3: CG

9 Terminal base pairs (BP symmetry reduced) at 5: CG

10 Terminal base pairs (BP symmetry reduced) at 3: CG

11 Terminal_5TA3: 0 Terminal_AU: 0 Terminal_AT: 0 Terminal_CG: 2

12 Terminal_dArU: 0 Terminal_dTrA: 0 Terminal_dCrG: 0 Terminal_dGrC: 0

which is used to determine which of the terminal parameters of Tab. 6.2 to apply to this sequence.
Additional information that is produced, but which is not directly relevant for the NN model, are base-pairs

16 Exact_duplex : GC/AT/CG/GC/TA/CG/ (6)

17 BP_reduced_duplex : CG/AT/CG/CG/AT/CG/ (6)
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intra-strand pairs

22 Exact_strandpairs : G>A C<T A>C T<G C>G G<C G>T C<A T>C A<G (10)

23 Reduced_strandpairs: G>A T>C A>C G>T C>G C>G G>T A>C T>C G>A (10)

and trimers

29 Trimers_list : (6) TC_/AG_ GAC/CTG ACG/TGC ACG/TGC GAC/CTG TC_/AG_

30 Trimers_set : (3) ACG/TGC=2 GAC/CTG=2 TC_/AG_=2

where the underscore _ means the end of the duplex.

7.2 Example for data files

For data files passed through the -data (3.1.5) option, as in the following example
examples/D-CMB-nncheck.sh

1 vargibbs -o=./D-CMB-nncheck -calc=nncheck -data=../data/D-SL98.dat,../data/D-OW04-1020.dat,../data/D-OW04DSC-1000.dat

will produce a file called D-CMB-nncheck.nncheck which is of the same format as for single sequences shown in
the previous section. For each sequence there will be a full analysis, and as a result this file can be very large.
At the end you will a summary for all sequences contain in the data file, among which the number of unique
symmetry reduced NNs

examples/verify/D-CMB-nncheck/D-CMB-nncheck.nncheck
9001 10 unique nearest-neighbours in dataset (NP+P, NN symmetry reduced)

9002 Neighbours set : AT_AT=511 AT_CG=538 AT_GC=545 AT_TA=295 CG_AT=568 CG_CG=443 CG_GC=287 ...

the number of base pairs

8998 2 unique base-pairs in dataset (BP symmetry reduced)

8999 Base-pair set : AT=2296 CG=2302

while not relevant to the NN model, this information has proven useful to catch typing mistakes. The summary
of 5′ and 3′ terminal properties are shown

9013 No Regex Matched Trimers

9014

9015 4 unique terminal-5’ base pairs

9016 Terminal-5’: AT=75 CG=90 GC=72 TA=44

9017

9018 2 unique terminal-5’ base pairs (BP symmetry reduced)

9019 Terminal-5’ (BP symmetry reduced): AT=119 CG=162

9020

9021 4 unique terminal-3’ base pairs

9022 Terminal-3’: AT=68 CG=100 GC=74 TA=39

9023

In addition, an analysis of the whole data file is performed displaying a number of potentially useful infor-
mation such as groups o sequence lengths

9028 **************************** Regression Groups analysis ********************

9029

9030 Salt/Length groups: (2)

9031 Salt: 1000 length: 4 (2) santalucia98 ref c=santalucia96 santalucia98 ref c=santalucia96

9032 Salt: 1000 length: 5 (2) santalucia98 ref d=sugimoto96 santalucia98 ref e=hall91

9033 Salt: 1000 length: 6 (24) santalucia98 ref d=sugimoto96 santalucia98 ref f=peyret ...

9034 Salt: 1000 length: 7 (5) santalucia98 ref d=sugimoto96 santalucia98 ref d=sugimoto96 ...

9035 Salt: 1000 length: 8 (49) santalucia98 ref d=sugimoto96 santalucia98 ref d=sugimoto96 ...

where the number in parenthesis shows the number of sequences of each salt/length pair. The groups of different
salt concentrations
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9053

9054

9055 Salt groups: (2)

and total strand concentration Ct

9057 Salt: 1020 (92) owczarzy04 owczarzy04 owczarzy04 owczarzy04 owczarzy04 owczarzy04 ...

9058

9059 Ct groups: (45)

9060 Ct: 2 (92) owczarzy04 owczarzy04 owczarzy04 owczarzy04 owczarzy04 owczarzy04 owczarzy04 ...

9061 Ct: 84 (1) owczarzy04
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8 Formatting the sequence data file

8.1 DNA-DNA or RNA-RNA duplexes

The data file containing the oligonuceotide sequences and their measured melting temperatures should be given
as in the following example

Example data files for DNA
1 temperature

2 CGTACACATGC GCATGTGTACG 62.5 1000 119

3 TACTAACATTAACTA ATGATTGTAATTGAT 62.6 1000 151

The first line should contain the word temperature after which there should be one sequence per line. Make
sure you last line terminates in a newline as otherwise the last sequence will be ignored. In the first column
place the main strand from 5′ to 3′, in the second column the complementary strand 3′ to 5′. The measured
melting temperature should be the third column, followed by the salt concentration in M (mol/L) and the
strand concentration Ct in µM (10−6 mol/L).

8.2 Hybrid DNA-RNA duplexes

For hybrid DNA-RNA, all sequences should contain the additional d and r characters to distinguish if they are
of DNA or RNA type. The sequence should be enclosed as show in the following example.

Example data files for DNA-RNA
1 temperature

2 r(UUUGUAUCCAAU) d(AAACATAGGTTA) 45.6 1000 100

3 d(GTTGGTTGGTTG) r(CAACCAACCAAC) 60.0 1000 8.3

8.3 Adding comments to your files

Since version 3.0 it is possible to add comments after the # sign for all sequences, as exemplified next
Example data with comments

1 temperature

2 #sequences from schoning00

3 d(AAAAAAAAAAAAAAAA) t(TTTTTTTTTTTTTTTT) 32 1010 10 #DNA-TNA poly-A and poly-T

4 d(AAAATTTATATTATTA) t(TTTTAAATATAATAAT) 47 1010 10 #DNA-TNA

they may either be single lines starting with #, or appended at the end of an entry. Anything after # towards
the end of the line is ignored.
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9 Files included in the package

VarGibbs comes with a number of files included.

9.1 Folder /usr/share/data/

This folder contains the input data such as parameter files (extension .par) and melting temperature data
(extension .dat)

9.1.1 Sequences and melting temperatures

D-SL96.dat DNA sequences from Ref. 19

D-SL98.dat DNA sequences from Ref. 8 and supplementary data from Ref. 21. A subset P-SL98-SUB.dat for
43 as used in Ref. 6.

D-OW04-[salt].dat DNA sequences, UV data from Ref. 16

D-OW04DSC-[salt].dat DNA sequences, DSC data from supplementary material of Ref. 16. Note that D-OW04DSC-1000.dat
uses uncorrected species concentrations.

D-CMB.dat DNA sequences, combined dataset D-SL98, D-OW04-1024 and D-OW04DSC-1020.

D-LS95.dat DNA-RNA hybrids at 100 mM [Na+], from Refs. 22.

D-CH12.dat RNA sequences containing GU, from Ref. 23

D-CH13-[salt].dat RNA sequences from T−1m × lnCt fitting, [salt]=71, 121, 221, 621 and 1021 mM, from
Ref. 18

D-CH13CF-[salt].dat RNA sequences with curve fitted Tm, [salt]=71, 121, 221, 621 and 1021 mM, from
Ref. 18

D-RW-[salt].dat RNA sequences at various concentrations Ct, [salt]=71, 121, 221, 621 and 1021 mM, these
were used in Ref. 18

D-RNAVL-[salt].dat RNA sequences at various concentrations Ct, with [salt] being [Na+] concentration close
to 71 mM, 121 mM and 1021 mM from Ref. 9, 24–28

D-DRFT.dat hybrid DNA-RNA at [Na+] 1000 mM curve-fitting from data Refs. 29–32

D-DRVH.dat hybrid DNA-RNA at [Na+] 1000 mM van’t Hoff regression from data Refs. 29–32

D-DRLS.dat hybrid DNA-RNA at [Na+] 100 mM from 9, 22, 24, 28, 33

D-BN20.dat hybrid DNA-RNA at [Na+] 100 mM from 20.

LNA locked nucleic acids used in [34], see nucleotide naming scheme in Tab. 6.1

mctigue04.dat single LNA modifications in DNA-DNA from 35.

you06.dat single LNA modifications in DNA-DNA from 36, excludes mismatches.

fakhfakh15-tab1.dat single LNA modifications in DNA-DNA from table 1 of 37.

fakhfakh15-tab2.dat single LNA modifications in DNA-DNA from table 2 of 37.

fakhfakh15-tab5.dat single LNA modifications in DNA-DNA from table 5 of 37.

domljanovic20.dat single LNA modifications in DNA-DNA from 38.

emehiser20.dat single LNA modifications in DNA-DNA from 39.
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ferreira21b.dat single LNA modifications in DNA-DNA from 40.

hughesman11b.dat single LNA modifications in DNA-DNA from 41.

koshkin98.dat single LNA modifications in DNA-DNA from 42.

koshkin98b.dat single LNA modifications in DNA-DNA from 43.

9.1.2 Parameters

Generic parameters

Generic parameters which can be used to initialize a minimization if no detailed previous knowledge exists or if
you would like to run an unbiased minimization.

gibbs-av.par generic set of initial parameters using initiation parameters as in Ref. 19

init s96.par set of initial parameters used to optimize D-SL96 data.

init s98.par set of initial parameters used to optimize D-SL98 data.

init ow04.par set of initial parameters used to optimize D-OW04 data.

Parameters from the literature

Here we describe the main parameters from entropy and enthalpy. For salt correction parameters see table 9.1.

Since: version 1.0

P-BS86.par for DNA from Ref. 12, very old parameters, only of historic interest

P-SL96.par for DNA from Ref. 19

P-SL98.par for DNA from Ref. 8

P-XIA98.par for RNA from Ref. 13

P-PY99.par for AA, CC, GG and TT mismatches in DNA from Ref. 14

Since: version 2.0

P-AL97.par for GT mismatches in DNA from Ref. 21

P-AL98.par for CT mismatches in DNA from Ref. 44

P-AL98B.par for AC mismatches in DNA from Ref. 45

P-AL98C.par for GA mismatches in DNA from Ref. 46

P-CH12.par for GU mismatches in RNA from Ref. 23

P-FR86.par for RNA from Ref. 47, 48, very old parameters, only of historic interest

P-SG95.par for hybrid DNA-RNA from Ref. 29

Since: version 2.2

P-SL04.par for DNA from Ref. 11

Since: version 3.2

P-TN04 for high salt DNA from Ref. 49.

P-BN21.par for low salt hybrid DNA-RNA from Ref. 7 (which is a correction to Ref. 20).

P-BN21-S3.par for high salt hybrid DNA-RNA from Ref. 7 (which is a correction to Ref. 20), replaces
P-SG95.par by the same authors.

P-RJ21KE.par derived from kinetic experiments for high salt DNA from Ref. 6

P-RJ21ME.par derived using a subset of 43 non-self-complementary sequences from D-SL98.dat (you can
find this under D-SL98-SUB.dat), from Ref. 6. Note that applying these parameters to the full
D-SL98.dat will result in relatively poor quality parameters. Therefore, the use of these parameters
is recommended only for comparative studies in relation to Ref. 6.

P-OW11-T2.par parameters for single and consecutive LNA modifications in DNA-DNA from table 2 of
50, see nucleotide naming scheme in Tab. 6.1.
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File name Oligo Scheme Ref. comment
schildkraut65.spar DNA tm ln [16, 17] -saltscheme=schildkraut65 (3.5.7)
frankkamenetskii71.spar DNA tm ln [16, 51] of historical interest only
santalucia96.spar DNA tm ln [19] of historical interest only
owczarzy04eq19.spar DNA tm ln [16] -saltscheme=owczarzy04eq19 (3.5.7)
owczarzy04eq20.spar DNA rec tm ln [16] -saltscheme=owczarzy04eq20 (3.5.7)
owczarzy04eq21.spar DNA tm ln [16] -saltscheme=owczarzy04eq21 (3.5.7)
owczarzy04eq22.spar DNA rec tm ln [16] -saltscheme=owczarzy04eq22 (3.5.7)
chen13eq22.spar RNA rec tm ln [18] -saltscheme=chen13eq22 (3.5.7)

Table 9.1
Files with salt correction factors. The equivalent salt correction factors with fixed coefficients are also shown.

Optimized parameters

Optimized parameters generated by VarGibbs.

Since: version 1.0 Ref. 1

AOP-CMB.par, BOP-CMB.par average optimized parameters (AOP) and best optimized parameters (BOP)
generated from dataset D-CMB with parameters.

AOP-OW04DSC.par generated from dataset D-OW04DSC.

BOP-OW04DSC.par generated from dataset D-OW04DSC.

AOP-OW04-[salt].par generated from dataset D-OW04-[salt].

AOP-OW04.par generated from dataset D-OW04-1020. Note that the salt concentration is absent from
the file name.

BOP-OW04.par generated from dataset D-OW04-1020.

AOP-SL96.par, BOP-SL96.par generated from dataset D-SL96. See script SL96-global.sh for settings.

AOP-SL98.par, BOP-SL98.par generated from dataset D-SL98. See script SL98-global.sh for settings.

Since: version 2.1

AOP-FIFRW-[salt].par generated from dataset D-RW-[salt], [salt]=71, 121, 221, 621 and 1021 mM,
with initiation parameters from P-XIA98. [52]

IP-FIF/P-IP-FIF-Na[salt].par interpolation of AOP-FIFRW-[salt].par, between 10 and 1021 mM. [52]

AOP-VIFRW-[salt].par generated from dataset D-RW-[salt], [salt]=71, 121, 221, 621 and 1021 mM,
with optimized initiation parameters. [52]

IP-VIF/P-IP-VIF-Na[salt].par interpolation of AOP-VIFRW-[salt].par, between 10 and 1021 mM. [52]

Since: version 2.2

Modification AOP-OW04DSC.par, BOP-OW04DSC.par, AOP-OW04-[salt].par, AOP-OW04.par,BOP-OW04.par
added symmetry_correction_entropy -0.587328 Reason: if used stand-alone these files may gen-
erate incorrect results when used with self-complementary sequences.

AOP-DRFT.par optimized parameters for DNA-RNA (DR) hybrids, optimized from curve fitting data [10].

AOP-DRVH.par optimized parameters for DNA-RNA (DR) hybrids, optimized from van’t Hoff plot data [10].

AOP-DRLS.par optimized parameters for DNA-RNA (DR) hybrids, optimized data at low [Na+] concen-
tration [10].

Since: version 4

AOP-LNA for single LNA modification, does not include mismatches, uses the initiation parameters from
AOP-CMB [34], see nucleotide naming scheme in Tab. 6.1.
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9.2 Folder /usr/share/example/

This folder contains example scripts. Processing times listed here are for an Intel(R) Xeon(R) CPU model
E5310 1.60GHz.

To run these scripts on your machine proceed as follows:

1. locate the script, usually you will find them at /usr/share/VarGibbs/examples

2. locate the data files, usually you will find them at /usr/share/VarGibbs/data

3. run

/usr/share/VarGibbs/examples/D-SL98-AOP-SL98.sh /usr/share/VarGibbs/data

4. alternatively copy the script to your local folder and then run locally

cd /usr/share/VarGibbs/examples/D-SL98-AOP-SL98.sh

./D-SL98-AOP-SL98.sh ./usr/share/VarGibbs/data

9.2.1 Local minimizations

SL96-local.sh for dataset D-SL96, processing time ≈1 min.

SL98-local.sh for dataset D-SL98, processing time: ≈1 min.

CMB-local.sh for D-CMB, processing time: ≈8 min.

XIA98-local.sh for D-XIA98, contributed by Izabela Ferreira, processing time: ≈5 s.

9.2.2 Global minimizations

The following scripts contain complete global minimization procedures. They will take considerable time to
run, CPU times given below were measured on a i7-5500U, a high end laptop processor.

SL96-global.sh for dataset D-SL96, processing time: ≈2 min.

SL98-global.sh for dataset D-SL98, processing time: ≈3 min.

CMB-global.sh for dataset D-CMB, processing time: ≈3 min.

OW04-global.sh for all salt concentrations of dataset D-OW04, processing time: ≈8 min.

OW04DSC-global.sh for all salt concentrations of dataset D-OW04DSC, processing time: ≈2 min.

XIA98-global.sh for D-XIA98, contributed by Izabela Ferreira, processing time: ≈2 min.

If you wish to reproduce the AOP and BOP files included in folder data then edit the scripts, locate and
modify the following to lines to

export MRR=1000

export ASL=0.001

see options -mrr (3.4.4) and -asl (3.4.6) for their meaning. Note that as the processing times will increase
accordingly you may prefer using a dedicated desktop or server for this purpose.

9.2.3 Temperature prediction

The following scripts use the option -calc=prediction (3.1.11), they only read the parameters and apply them
to the sequences, each should take less than a second to run.

D-SL98-P-SL98.sh self-prediction of dataset D-SL98 from parameters P-SL98.

D-SL98-AOP-SL98.sh self-prediction of dataset D-SL98 from parameters AOP-SL98.

D-CMB-AOP-CMB.sh self-prediction of dataset D-CMB from parameters AOP-CMB.

sequence-AOP-CMB.sh prediction of a single DNA sequence.

CH12-verify.sh prediction of dataset D-CH12 with parameters P-XIA98 and P-CH12.

sequence-XIA98.sh prediction for single sequence with P-XIA98. Contributed by Izabela Ferreira.
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9.3 Folder /usr/share/example/verify

This folder contains all output data of the scripts include in this package. This allows you to verify if your local
implementation is running correctly. If you run the scripts described here they should give you identical results
to the ones in this folder.

Note that some files are gzipped to save space. To view them unzip as in the following example

gunzip AOP-SL96.log.00001.gz

39



A System messages

The documentation of system messages is still work in progress. Therefore, during normal operations of
VarGibbs you may encounter many that are not documented here, however most of these messages are hopefully
self-explanatory.

Messages are separated in groups, see sections below, and are identified by a unique uppercase code starting
and ending with a colon as in the following example

:INFORPF:Reading parameters from init_s96.par

:WNSEEV: Warning no specific Enthalpy or Entropy values, falling back to generic values

:INFOSRSC: Setting reference species concentration to 100 from sequence CCGG

The format of the message code should allow you to parse output files with system utilities like grep as well as
locate sections in the source code where these messages occur.

A.1 Informational messages INFO

These type of messages are sent to stdout, most of these messages are self-explanatory.

• INFOAEDF informs that all debug flags were activated.

• INFOEDF informs that a specific debug flag was activated.

• INFODFREG informs that a debug flag was recognized as a regular expression.

• INFODFNF the given debug flag does not exists.

• INFODBTLTR -limit (3.3.3) has been reached.

• INFOMM0D when -mm=0 (3.3.6).

• INFOMNRLMR -mrr (3.4.4) has been reached.

• INFOLTSDDR -asl (3.4.6) has been reached.

• INFOREDENV shows options that were read from the environment variable VARGIBBS.

• INFORPF shows the parameter file being read, -par (3.1.2).

• INFOSBSCT reports the first salt concentration read from file, -data (3.1.5).

• INFOSPSCT shows that a parameter of type Na+:concentration was read.

• INFOSRSC reports the first total strand concentration read from file, -data (3.1.5).

• INFOVARPAR reports a new variable read from -var (3.3.2).

• INFOIVRMR reports that initial parameters are set for -calc=minglobal (3.1.11) and that minimization
will now begin.

• INFONBOPR reports that a minimization round -mrr (3.4.4) has finished and displays the new best χ2.
This message is displayed each by a lower χ2 is obtained.

• INFOLMSAR informs at which round the local minimization stopped. A new local minimization will start
if limit -mrr (3.4.4) was not reached.

• INFOTRRF informs how many trimer rules were read.

• INFOUSCDAT informs that target salt is zero, -targetsalt (3.5.4), and will try to use the salt concentration
listed in the dataset for performing the salt correction.
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• INFOASCS informs on which temperatures the salt correction was applied, see 3.5.2.

• INFOCSNPWC informs that the complementary sequence was not given, -cseq (3.2.2), and that it is working
out the complementary from complementarity rules. See also -duplextype (3.1.6).

• INFOCFSS informs that calculation is being performed for a singe sequence given by -seq (3.2.1) and
optionally by -cseq (3.2.2).

• INFOSSALTC informs the salt concentration that was passed via -seqsalt (3.5.3).

• INFOWNNATF informs the name of the file to which the analysis of -calc=nncheck (3.1.11) is being written.

A.2 Debug messages D

Debug messages are only shown if explicitly set with the -debug (3.4.9) option which are printed to stderr.
Multiple debug flags can be set with regular expressions, for example -debug=DINN.* (3.4.9) activates all flags
that start with DINN.

• ALL activate all existing debug flags, make sure you redirect stderr to a file. Shows a message of type
INFOAEDF.

• DOPT SHEQ shows how options are interpreted in the command line or environment variable.

• DINN HSG shows ∆H, ∆S and ∆G as they are being calculated.

• DINN PTHSG shows partial totals of ∆H, ∆S and ∆G.

• DGBM CHI2 shows χ2 each time the merit function is evaluated.

• DREG FSRCRNAN informs about problems in the linear regression algorithm.

A.3 Warning messages W

Warning messages are sent to stderr, pay attention to these alerts, they were not considered errors but may
affect the outcome.

• WMINPCIP means that all initial parameters give the same χ2, therefore the minimization engine has trouble
finding the function minima. In many cases this is solved by itself, but we suggest checking the quality of
the results, and perhaps play around with -randominitial (3.4.3) and/or change your initial parameters.

• WRIIWR an internal representation of a nucleotide was changed as a result of using -dict (3.1.10).

• WROVNV a parameter was read again from some file with a different value, -par (3.1.2).

• WNSEEV means that VarGibbs could not locate NN specific enthalpy and/or entropy parameters, but did
found generic ones.

• WUBPG could not find a parameter for a context-dependent base-pair, but found a context-independent
parameter and is using it.

A.4 Error messages ERR

Error messages are printed to stderr after which the program terminates, that is, these are conditions that
prevent the VarGibbs from continuing. Also printed is the location in the source file where this error occurred,
which may be used for debugging. An error message looks typically like this:

:ERRNAPSLA:../../base/options/Options.cpp@126: Error No arguments provided,

showing list of available arguments and exiting

Program terminating

• ERRNAPSLA No options were read from command line. In this case VarGibbs simply prints all available
options and exits.

• ERRMOCYP A required ‘mandatory’ option is missing.

General cause: usually you will have just forgotten or misspelled an option, please check the documen-
tation or study some examples.
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Special situation: Options for VarGibbs can be ‘optional’ or ‘mandatory’. Certain options are always
‘mandatory’, however certain options may switch from ‘optional’ to ‘mandatory’ depending which
previous options were given. Sounds confusing? Lets see an example. Consider two hypothetical
option -x and -y, both are optional but one depends on the other. Therefore, if you do not provide
any of them the program will not complain. But if you do provide one, you also need to provide
the other. Meaning: if you specify -x then you also need to specify -y. In which case -y becomes
‘mandatory’, and if you do not provide -y ends with ERRMOCYP.

• ERRNOSEQR no information was found in the sequence datafiles that were provided with -data (3.1.5) and
VarGibbs was left with no sequence data to work with. See section 8 on how to format this type of file.

• ERRNPF after reading in all sequences, the program was unable to find a parameter, not even a generic
one. In this case you typically need to revise the parameter files given in -par (3.1.2) and check that
they contain the all parameters needed. If your parameter files contain everything you think you need
and you still get this messages, we suggest revising your sequences which may have been mistyped (a very
common occurrence, unfortunately). In this case we suggest running -calc=nncheck (3.1.11) and check
that resulting base-pairs and nearest neighbours are consistent.

• ERRUTPL sequence data file given in -data (3.1.5) is in a format that cannot be interpreted correctly. See
section 8 for details on data formats.

A.5 Internal error messages IERR

These type of message has a common IERR prefix and they are not user correctable, that is, they are not a
matter of choosing different options or missing files. They usually happen when the program finds itself in
a condition that should never have occurred, regardless of what the user did. Typical situations where these
errors may occur if when changes in the C++ compiler cause the program logic to change. For example, if the
source was compiled with different compiler options, or with a different compiler. If any of these occur please
contact us.

42



Bibliography

[1] Gerald Weber. Optimization method for obtaining nearest-neighbour DNA entropies and enthalpies directly
from melting temperatures. Bioinformatics, 31(6):871–877, 2015. doi: 10.1093/bioinformatics/btu751. URL
http://bioinformatics.oxfordjournals.org/content/31/6/871.

[2] Gerald Weber, Jonathan W. Essex, and Cameron Neylon. Probing the microscopic flexibility of DNA from
melting temperatures. Nat. Phys., 5:769–773, 2009. doi: 10.1038/nphys1371.

[3] G. Weber. Finite enthalpy model parameters from DNA melting temperatures. Europhys. Lett., 96:68001,
2011. doi: 10.1209/0295-5075/96/68001. URL http://iopscience.iop.org/0295-5075/96/6/68001.

[4] Gerald Weber. Mesoscopic model parametrization of hydrogen bonds and stacking interactions of RNA
from melting temperatures. Nucleic Acids Res., 41:e30, 2013. doi: 10.1093/nar/gks964. URL http:

//nar.oxfordjournals.org/content/41/1/e30.

[5] Gerald Weber. TfReg: Calculating DNA and RNA melting temperatures and opening profiles with
mesoscopic models. Bioinformatics, 29:1345–1347, 2013. doi: 10.1093/bioinformatics/btt133. URL
http://bioinformatics.oxfordjournals.org/content/29/10/1345.

[6] Nick A Rejali, Felix D Ye, Aisha M Zuiter, Caroline C Keller, and Carl T Wittwer. Nearest-neighbour
transition-state analysis for nucleic acid kinetics. Nucleic Acids Res., 49(8):4574–4585, 2021. doi: 10.1093/
nar/gkab205.

[7] Dipanwita Banerjee, Hisae Tateishi-Karimata, Tatsuya Ohyama, Saptarshi Ghosh, Tamaki Endoh,
Shuntaro Takahashi, and Naoki Sugimoto. Correction to ‘improved nearest-neighbor parameters for
the stability of RNA/DNA hybrids under a physiological condition’. Nucleic Acids Res., 2021. doi:
10.1093/nar/gkab780.

[8] John SantaLucia, Jr. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor
thermodynamics. Proc. Natl. Acad. Sci. USA, 95(4):1460–1465, 1998. doi: 10.1073/pnas.95.4.1460. URL
http://www.pnas.org/cgi/content/abstract/95/4/1460.

[9] S. Nakano, M. Fujimoto, H. Hara, and N. Sugimoto. Nucleic acid duplex stability: influence of base
composition on cation effects. Nucleic Acids Res., 27(14):2957, 1999. doi: 10.1093/nar/27.14.2957.
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